
> How to use this cheat sheet
R is one of the most popular programming languages in data science and is widely used across various industries and 
in academia. Given that it’s open-source, easy to learn, and capable of handling complex data and statistical 
manipulations, R has become the preferred computing environment for many data scientists today. 
 

This cheat sheet will cover an overview of getting started with R. Use it as a handy, high-level reference for a quick 
start with R. For more detailed R Cheat Sheets, follow the highlighted cheat sheets below.

xts Cheat Sheet data.table Cheat Sheet

> Using packages
R packages are collections of functions and tools developed by the R community. They increase the power of R by 
improving existing base R functionalities, or by adding new ones.



install.packages(“tidyverse”) 
library(tidyverse) 

#Lets you install new packages (e.g., tidyverse package)

#Lets you load and use packages  (e.g., tidyverse package)

> The working directory
The working directory is a file path that R will use as the starting point for relative file paths. That is, it's the default 
location for importing and exporting files. An example of a working directory looks like ”C://file/path”



getwd() 
setwd(“C://file/path”) - 

#Returns your current working directory

#Changes your current working directory to a desired filepath

> Operators
R has multiple operators that allow you to perform a variety of tasks. Arithmetic operators let you perform arithmetic 
such as addition and multiplication. Relational operators are used to compare between values. Logical operators are 
used for Boolean operators.

Arithmetic Operators

a + b 
a - b 
a * b 
a / b 
a ^ b 
a%%b   
a%/%b 

#Sums two variables

#Subtracts two variables

#Multiply two variables

#Divide two variables

#Exponentiation of a variable

#Remainder of a variable

#Integer division of variables

Relational Operators

a == b 
a != b 
a > b 
a < b 
a >= b 
a <= b 

#Tests for equality

#Tests for inequality


#Tests for greater than

#Tests for lower than

#Tests for greater than or equal to

#Tests for less than or equal to

Logical Operators

!    
&    
&& 
|  
|| 

#Logical NOT

#Element-wise logical AND

#Logical AND

#Element-wise logical OR

#Logical OR

Assignment Operators

x <- 1
x = 1

 # Assigns a variable to x

 #Assigns a variable to x

Other Operators

%in%
$
%>% 

 #Identifies whether an element belongs to a vector 

 #Allows you to access objects stored within an object


#Part of magrittr package, it’s used to pass objects to functions

> Accessing help
Accessing help files and documentation
?max 
?tidyverse 
??"max" 

#Shows the help documentation for the max function

#Shows the documentation for the tidyverse package


#Returns documentation associated with a given input

Information about objects
str(my_df) 
class(my_df) 

#Returns the structure and information of a given object

#Returns the class of a given object

> Getting started with vectors
Vectors are one-dimension arrays that can hold numeric data, character data, or logical data. In other words, a vector 
is a simple tool to store data. 

Creating vectors

Input

c(1,3,5)

1:7

seq(2,8,by = 2)

rep(2,8,times = 4)

rep(2,8,each = 3)

Output

1 3 5

1 2 3 4 5 6 7

2 4 6 8

2 8 2 8 2 8 2 8

2 2 2 8 8 8

Description

Creates a vector using elements 
separated by commas

Creates a vector of integers 
between two numbers

Creates a vector between two 
numbers, with a specified interval 
between each element.

Creates a vector of given 
elements repeated a number of 
times.

Creates a vector of given 
elements repeating each element 
a number of times.

Vector functions
These functions perform operations over a whole vector.

sort(my_vector) 
rev(my_vector) 
table(my_vector) 
unique(my_vector) 

#Returns my_vector sorted

#Reverses order of my_vector


#Count of the values in a vector


#Distinct elements in a vector

Selecting vector elements
These functions allow us to refer to particular parts of a 
vector.

my_vector[6] 
my_vector[-6] 
my_vector[2:6] 
my_vector[-(2:6)] 

my_vector[c(2,6)] 

my_vector[x == 5] 
my_vector[x < 5 ]
my_vector[x %in% c(2, 5 ,8 )] 

#Returns the sixth element of my_vector

#Returns all but the sixth element

#Returns elements two to six


#Returns all elements except 
those between the second and the sixth


#Returns the second and sixth 
elements


#Returns elements equal to 5

#Returns elements less than 5


#Returns elements 
in the set {2, 5, 8} 

R for Data Science


Learn R online at www.DataCamp.com

Getting started with R Cheat Sheet

> Math functions
These functions enable us to perform basic mathematical operations within R

log(x) 
exp(x) 
max(x) 
min(x) 
mean(x) 
sum(x) 
median(x) 

#Returns the logarithm of a variable

#Returns exponential of a variable

#Returns maximum value of a vector

#Returns minimum value of a vector

#Returns mean of a vector

#Returns sum of a vector


#Returns median of a vector

quantile(x) 
round(x, n) 
rank(x) 
signif(x, n) 
var(x) 
cor(x, y)  
sd(x) 

#Percentage quantiles of a vector

#Round to n decimal places


#Rank of elements in a vector

#Round off n significant figures


#Variance of a vector

#Correlation between two vectors


#Standard deviation of a vector

> Getting started with strings
The “stringr” package makes it easier to work with strings in R - you should install and load this package to use the 
following functions.

Find Matches

#Detects the presence of a pattern match in a string


#Detects the presence of a pattern match at the 
beginning of a string


#Finds the index of strings that contain pattern match


#Locates the positions of pattern matches in a string


#Counts the number of pattern matches in a string


str_detect(string, pattern, negate = FALSE)  


str_starts(string, pattern, negate = FALSE)  


str_which(string, pattern, negate = FALSE)  


str_locate(string, pattern)


str_count(string, pattern)

Subset

#Extracts substrings from a character vector


#Returns strings that contain a pattern match


#Returns first pattern match in each string as a vector


#Returns first pattern match in each string as a matrix 
with a column for each group in the pattern


str_sub(string, start = 1L, end = -1L)


str_subset(string, pattern, negate = FALSE) 


str_extract(string, pattern) 


str_match(string, pattern)

Mutate

#Replaces substrings by identifying the substrings 
with str_sub() and assigning them to the results. 


#Replaces the first matched pattern in each string.


#Replaces all matched patterns in each string


#Converts strings to lowercase 


#Converts strings to uppercase 


#Converts strings to title case 


str_sub() <- value 


str_replace(string, pattern, replacement)  


str_replace_all(string, pattern, replacement) 


str_to_lower(string) 


str_to_upper(string) 


str_to_title(string) 

Join and Split

#Repeats strings n times


#Splits a vector of strings into a matrix of substrings

str_dup(string, n) 


str_split_fixed(string, pattern, n) 

Order

#Returns the vector of indexes that sorts a character 
vector


#Sorts a character vector

str_order(x) 


str_sort(x) 

> Getting started with Data Frames in R
A data frame has the variables of a data set as columns and the observations as rows.

#This creates the data frame df, seen on 
the right

df <- data.frame(x = 1:3, y = 
c(“h”, “i”, “j”), z = 12:14)

1

2

3

h

i

j

12

13

14

x y z

#This selects all columns of the third row

df[ ,3] 1

2

3

h

i

j

12

13

14

x y z

#This selects the column z


df$z 1

2

3

h

i

j

x y

13

12

14

z

#This selects all rows of the second 
column

df[ ,2] 1

2

3

12

13

14

x z

h

i

j

y

#This selects the third column of the 
second row


df[2,3] 1

2

3

h

i

j

12

14

x y z

13

> Manipulating Data Frames in R
dplyr allows us to easily and precisely manipulate data frames. To use the following functions, you should install and 
load dplyr using install.packages(“dplyr”)

#Takes a sequence of vector, 
matrix or data-frame arguments 
and combines them by columns

bind_cols(df1, df2)

#Takes a sequence of vector, 
matrix or data frame arguments 
and combines them by rows

bind_rows(df1, df2)

#Extracts rows that meet logical 
criteria


filter(df, x == 2)

#Removes rows with duplicate 
values

distinct(df, z)

#Selects rows by position

slice(df, 10:15)

#Selects rows with the highest 
values

slice_max(df, z, prop = 

0.25)

#Extracts column values as a 
vector, by name or index

pull(df, y)

#Extracts columns as a table

select(df, x, y)

#Moves columns to a new position

relocate(df, x, .after = 
last_col())

#Renames columns

rename(df, “age” = z)


#Orders rows by values of a 
column from high to low

arrange(df, desc(x))

#Computes table of summaries

summarise(df, total = 
sum(x))

#Computes table of summaries.

summarise(df, total = 
sum(x))

#Use group_by() to create a "grouped" copy of a table 
grouped by columns (similarly to a pivot table in 
spreadsheets). dplyr functions will then manipulate 
each "group" separately and combine the results



df %>% 

    group_by(z) %>% 

    summarise(total = sum(x))

Try this Cheat Sheet on 
DataCamp Workspace

Get Started

https://www.datacamp.com/cheat-sheet/xts-cheat-sheet-time-series-in-r
https://www.datacamp.com/cheat-sheet/the-datatable-r-package-cheat-sheet
https://www.rdocumentation.org
https://app.datacamp.com/workspace/new?editorVersion=dcStudioEditor&_tag=template&templateKey=template-r-cheat-sheet-starter&utm_campaign=r-cheat-sheet-starter

